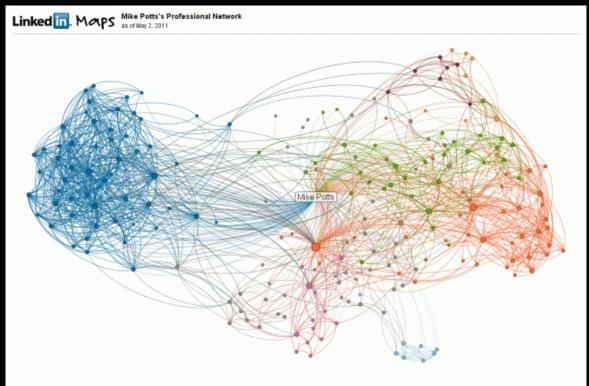
Mathematical Modeling of Social Phenomena

Agent-based modeling / Networks


Class Layout

- Simulations, why, why not?
- Agent-based modeling
- Networks
- Epidemiology

Simulations: Why, why not?

- Powerful, flexible and quick
- Black box dynamics
- Implicit specification
 - \circ stopping problem
 - \circ communication
- Huge space of possibilities
 - external validity

Example: Networks

Social networks

• Graphs

- \circ Nodes
- \circ Edges
- Attributes
- Digraphs
 - \circ with directed edges

Social networks: Properties

- Size
- Density / Degree (n of edges per node)
- Reachability / Connectedness
- Distance / Path-length

Example: Graph

Laura has two friends, Franscesco and Tony Tony has two friends, Tony and Ernesto Ernesto has one friend, Tony

Degree: Average degree

Theorem: The average degree of a neighbor will be at least as large as the degree of the network.

Social capital

How connected are we?

How fast will information, or ebola, travel? Other examples?

Path-length

Number of edges to get from node A to node B For a graph, it is its average number.

Number of flights needed Social distances Other examples?

Cluster coefficient

Percentages of triples of nodes with edges

Social capital, again Innovation capacity Norm adoption

Connectedness

Is there edges connecting all subgraphs of the graph?

Information spreading? Ebola spreading?

Network formation

Random Small world Preferential attachment

Small world phenomena

- Six degrees of separation
 - Exponential growth, 100ⁿ, but cliques
- Erdős number
- Erdős-Bacon-Sabbath number
- Hank Aaron (Erdős number: 1):

714 = 2 × 3 × 7 × 17, 715 = 5 × 11 × 13, and 2 + 3 + 7 + 17 = 5 + 11 + 13 = 29

Ego networks

- Centrality
- Power
- Distance
- Celebrities

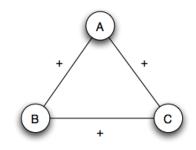
Adding networks

- Schelling's segregation model
- Granovetter's threshold model
- Akerlof's market for lemons

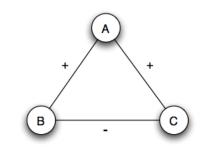
Adding networks

What role could they play in your papers?

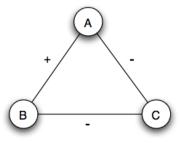
Philosophically

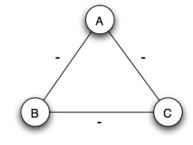

Does it chime with,

Mäki? McCloskey? Friedman?

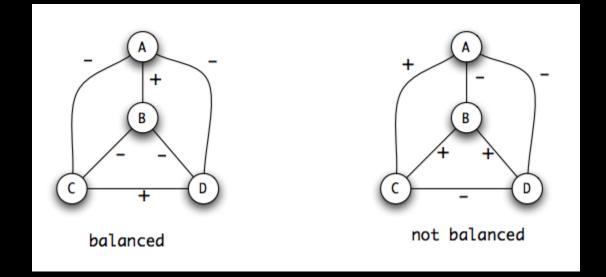

Cascading through networks

Threshold model


Structural balance graph


(a) A, B, and C are mutual friends: balanced.

(b) A is friends with B and C, but they don't get along with each other: not balanced.



(c) A and B are friends with C as a mutual enemy: balanced.

(d) A, B, and C are mutual enemies: not balanced.

Structural balance graph

Abolishing social norms

Actually, just go to the paper.

Strong and weak ties